SYMBOLS FOR THERMODYNAMICAL AND PHYSICO-CHEMICAL QUANTITIES AND CONVENTIONS RELATING TO THEIR USE ADOPTED AS RECOMMENDED PRAGTICE BY THE CHEMICAL SOCIETY.

(Where two or more symbols separated by commas or semicolons are given for a quantity, these symbols are to be regarded as alternatives for which no preference is expressed. On the other hand, where two symbols are separated by a dotted line, the former is the first preference.)

1. To be Printed in Black Italic.
 (Certain important physical constants.)

\boldsymbol{F} Faraday's constant.
J Mechanical equivalent of heat.
N Avogadro's number.
$\boldsymbol{R}\left\{\begin{array}{l}\text { Gas constant per mol. } \\ \text { Rydberg's constant. }\end{array}\right.$
c Velocity of light in vacuo.
e Electronic charge (charge equal and opposite in sign to that of an electron).
\boldsymbol{g} Acceleration due to gravity (standard value, if variation from standard is significant).
h Planck's constant.
le Boltzmann's constant.
\boldsymbol{m} Rest mass of an electron.

2. To be Printed in Ordinary Italic, when not Greek.
 General Physics and Chemistry.

Length . mean free path of molecule	- . .	. $\} l$
height.	. . .	- h
diameter, distance	- . .	- d
diameter of molecules	. . .	σ
radius.	. . .	-r
Mass	- . .	- m
molecular weight M
atomic weight	. . .	- A
atomic number	. . .	- Z
gram-equivalent weight .	- - .	- Z, J
Time	- . -	. t
time interval, especially half-	or mean-life	- $\boldsymbol{\tau}$
frequency	ν
Velocity v; c, (u, v, w)
of ions	. . .	- u (with subscript)
angular	. .	ω
Acceleration	.	. f. . a
due to gravity (as variable)	. . .	- g

Heat and Thermodynamics.

Temperature, on absolute scale, $\left({ }^{\circ} \mathrm{K}\right)$. . . T on other scales θ
Thermal conductivity k
Energy (general symbol) E
Work done by or on a system w . . W
Heat entering a system q
Specific heat c_{p} and c_{0} molecular heat C_{p} and C_{0}
Ratio of specific heats
Latent heat, per g .
γ
l
per mol L
Intrinsic energy U . . E
Enthalpy, total heat, or heat content . . . H
Entropy S
Free energy (Helmholtz) A . . F
Thermodynamic potential, Gibbs function, free energy (G. N. Lewis) G

Optics.

3. To be Printed in Roman, when not Greek.

(a) Examples of Mathematical Constants and Operators.

Base of natural logarithms e
Ratio of circumference to diameter . . . π
Differential d
partial ∂
Increment Δ
very small increment δ
Sum $\mathbf{\Sigma}$
Product Π
Function f, ϕ
(b) Examples of single-letter abbreviations.

* E.g. " ma." for " milliampère "; but " amp." is preferred for " ampère."
\dagger Separated by a hyphen (and no full stop) from a chemical formula which follows it.

The following prefixes to abbreviations for the names of units should be used to indicate the specified multiples or sub-multiples of these units:

M	mega-	$\mathbf{1 0} 0^{6} \times$
k	kilo-	$10^{3} \times$
d	deci-	$10^{-1} \times$
c	centi-	$10^{-2} \times$
m	milli-	$10^{-3} \times$
μ	micro-	$10^{-6} \times$

e.g., M Ω. denotes megohm; kw., kilowatt; and $\mu \mathrm{g}$., microgram. The use of $\mu \mu$. instead of $m \mu$. to denote $10^{-7} \mathrm{~cm}$., or of γ to denote microgram is deprecated.

4. Subscripts and other Modifying Signs.

(a) Subscripts to symbols for quantities.

ц, I. ... \quad especially with symbols for thermodynamic functions, referring to
$1,2 \ldots$ different systems or different states of a system.
А в .. referring to molecular species A, B, etc.
1
referring to a typical ionic species \mathbf{i}.
a
referring to an undissociated molecule.
+. - referring to a positive or negative ion, or to a positive or negative electrode.
indicating constant pressure, volume, and temperature respectively.
indicating adiabatic conditions.
$\begin{array}{ll}\text { p. . a } & \text { indicating that no work is performed. } \\ \text { with symbol for an equilibrium constant, indicating that it is }\end{array}$ expressed in terms of pressure, concentration, or activity.
a, $\mathrm{V}, \mathrm{L}, \mathrm{X}$ referring to gas, vapour, liquid, and crystalline states, respectively.
$t, e, s, t, d \quad$ referring to fusion, evaporation (vaporisation of liquid), sublimation, transition, and dissolution or dilution respectively.
referring to the critical state or indicating a critical value.

- referring to the critical state or indicating a critical value. infinite dilution.
O, D, F with symbols for optical properties, referring to a particular wavelength.
Where a subscript has to be added to a symbol which already carries a subscript, the two subscripts may be separated by a comma or the symbol with the first subscript may be enclosed in parentheses with the second subscript outside.
(b) Other modifying signs.
- as right-hand superscript to symbol (particularly to a symbol for a general thermodynamic function-see p. 5), referring to a standard state.
[] enclosing formula of chemical substance, indicating its molar concentration.
\{\} enclosing formula of chemical substance, indicating its molar activity.

In crystallography it is recommended that :
Millerian indices be enclosed in parentheses, ();
Laue indices be unenclosed;
Indices of a plane family be enclosed in braces, \{ \};
Indices of a zone axis or line be enclosed in brackets, [].
Numerals attached to a symbol for a chemical element in various positions have the following meanings:
upper left mass number of atom. lower left nuclear charge of atom. lower right number of atoms in molecule.
e.g., ${ }_{3}^{7} \mathrm{Li} ;{ }_{1}^{2} \mathrm{H}_{2}\left(=\mathrm{D}_{2}\right)$.

ALPHABETICAL INDEX OF RECOMMENDED SYMBOLS, and single-letter abbreviations.

including all those given in the above lists except prefixes, subscripts and other modifying signs.
The name of any quantity for which a given symbol is a second preference is printed in parentheses.
A free energy-Helmholtz ; atomic weight; surface area.
A. Ångstrom unit.
a activity; (acceleration).
a. ampère, in sub-units-see footnote, p. 2093.
B magnetic induction.
C concentration; electrostatic capacity.
with subscript: molecular heat capacity.
c. Centigrade.
c velocity of light in vacuo.
c velocity; concentration.
with subscript : specific heat.
D diffusion coefficient.
d diameter; distance; (density).
d differential.
∂ partial differential.
E energy; (intrinsic energy); potential difference, especially electromotive force of voltaic cells.
with subscript : single electrode potential.
e electronic charge-charge equal and opposite in sign to that of an electron.
e quantity of electricity, especially electrostatic charge.
with subscript : single electrode potential.
e base of natural logarithms.
F Faraday's constant.
F force; (free energy-Helmholtz).
F. farad; Fahrenheit.
f acceleration; activity coefficient, for molar concentration; partition function.
f function.
G thermodynamic potential, Gibbs function, free energy-G. N. Lewis.
g acceleration due to gravity, standard value.
g acceleration due to gravity, as a variable; osmotic coefficient.
g. gram.
H enthalpy, total heat, heat content; magnetic field strength.
H. henry.
h Planck's constant.
h height.
I moment of inertia; ionic strength; electric current; intensity of light.
i vapour pressure constant; van 't Hoff's factor.
J mechanical equivalent of heat.
J gram-equivalent weight.
K chemical equilibrium constant; (compressibility).
K_{s} solubility product.
K. Kelvin.
le Boltzmann's constant.
k thermal conductivity; velocity constant of chemical reaction.
L latent heat per mol; self inductance; (solubility product).
l latent heat per g.; length; mean free path of molecules. with subscript : equivalent ionic conductance, " mobility ".

1. litre.
M molecular weight; mutual inductance; magnetic moment.
M. molar concentration.
\boldsymbol{m} rest mass of an electron.
m mass.
m. metre.

N Avogadro's number.
N mol fraction.
N. normal concentration.
n number of mols.
with subscript: (transport number).
with subscript : refractive index.
P pressure.
[P] parachor.
p pressure.
Q quantity of electricity.
q heat entering a system.
\boldsymbol{R} gas constant per mol; Rydberg's constant.
R electrical resistance.
$[R]$ with subscript: molecular refraction.
r radius; (specific resistance).
with subscript : specific refraction.
r. Röntgen unit.
S entropy.
s solubility; (surface area).
T temperature, on absolute Kelvin scale. with subscript: transport number.
t time; (temperature-not on absolute scale).
U intrinsic energy.
u velocity component.
with subscript: velocity of ions.
V volume; potential, potential difference, including Volta potential.
v. volt.
v volume; velocity; velocity component.
W (work done by or on a system).
w. watt.
w work done by or on a system; velocity component.
X force component; potential gradient in electric field.
x mol fraction.
Y force component.
Z force component; g.-equivalent weight; number of molecular collisions per second; atomic number.
z valency of an ion.
α degree of electrolytic dissociation; angle of optical rotation.
$[\alpha]$ specific optical rotation.
Γ surface concentration excess.
γ ratio of specific heats; surface tension.
Δ increment.
δ very small increment.
ϵ dielectric constant; molar extinction coefficient.
ζ electrokinetic potential.
η efficiency of any process; viscosity; electrolytic polarisation, overvoltage.
$\boldsymbol{\theta}$ angle of contact; temperature-not on absolute scale.
$\boldsymbol{\kappa}$ compressibility; specific conductance; magnetic susceptibility-volume.
Λ equivalent conductance.
λ wave length.
$\mu \quad$ chemical potential; dipole moment; magnetic permeability.
with subscript: (refractive index).
μ. micron.
ν frequency; wave number.
Π pressure, especially osmotic pressure.
Π product.
$\pi \quad$ (electrolytic polarisation, overvoltage).
$\pi \quad$ ratio of circumference to diameter.
ρ density; specific resistance.
Σ sum.
σ diameter of molecules; (surface tension); (specific conductance).
τ time interval, especially half or mean life.
ϕ fluidity; electronic exit work function; magnetic flux.
ϕ function.
χ magnetic susceptibility-mass.
ψ wave function.
Ω. ohm.
ω angular velocity; specific magnetic rotation.

