SYMBOLS FOR THERMODYNAMICAL AND PHYSICO-CHEMICAL QUANTITIES AND CONVENTIONS RELATING TO THEIR USE, ADOPTED AS RECOMMENDED PRACTICE BY THE CHEMICAL SOCIETY.

(Where two or more symbols separated by commas or semicolons are given for a quantity, these symbols are to be regarded as alternatives for which no preference is expressed. On the other hand, where two symbols are separated by a dotted line, the former is the first preference.)

1. To be Printed in Black Italic.

(Certain important physical constants.)

- Faraday's constant. F Mechanical equivalent of heat. J N Avogadro's number. Gas constant per mol. R Rydberg's constant. Velocity of light in vacuo. Electronic charge (charge equal and opposite in sign to that of an electron). e Acceleration due to gravity (standard value, if variation from standard is \boldsymbol{g} significant). Planck's constant. h Boltzmann's constant. k Rest mass of an electron.
 - 2. To be Printed in Ordinary Italic, when not Greek.

General Physics and Chemistry.

	Gene	our I	uysus	unu (21001100	ע ייינ	·•
Length		•			•	•	$)_{I}$
mean free path	of mo	lecule	s	•	•	• .	<i>,</i> -
height							h
diameter, distance	:						d
diameter of mol	ecules	3					σ
radius							r
Mass				•			m
molecular weight							M
atomic weight							\boldsymbol{A}
atomic number							
gram-equivalent v	veight	•			•		Z, J
Time							t
time interval, espe							au
frequency .	٠, ٠	•	•	•			ν
Velocity	•						v; c , (u, v, w)
of ions .				-			u (with subscript)
angular .					•		ω
Acceleration .							$f \dots a$
due to gravity (as							g

Force Moment of inertia Pressure especially osmotic		· · · · · · · · · · · · · · · · · · ·	. І . р, . П	
Volume Density	•	· · ·	. υ, · · · · · · · · · · · · · · · · · ·	V d K
Viscosity Fluidity			. η . φ	
Surface area Angle of contact Surface tension Parachor Surface concentration exces	•	· · · · · · · · · · · · · · · · · · ·	. θ	. , , σ
Number of mols Concentration, mol fraction in other term	ns .	· · ·	. n . N,	
Solubility Diffusion coefficient	•	· ·	. s . D	
Chemical equilibrium constated solubility product Velocity constant of chemical Number of molecular collisist Partition function	al reaction	ond .	(s) K . K _s . k . Z . f	, L
Efficiency, of any process . Wave function	•		. η . ψ	
H	leat and T	hermodynar	nics.	
Temperature, on absolute s on other scale Thermal conductivity .	es .	· · ·	. Τ . θ . k	<i>t</i>
Energy (general symbol) . Work done by or on a system Heat entering a system . Specific heat molecular heat Ratio of specific heats Latent heat, per g per mol .	em .	· · · · · · · · · · · · · · · · · · ·	. q . c _p . C _I . y . l . L	W and c_v , and C_v
Intrinsic energy Enthalpy, total heat, or he Entropy Free energy (Helmholtz) Thermodynamic potential			. H . S . A	
energy (G. N. Lewis)		• •	. G	

Vapour pressure con	stant	•	•	•	•		1
Chemical potential							μ
Activity							a
coefficient (for mo	lar co	ncent	ration)			ſ
Osmotic coefficient		•	•	•			g i
Van 't Hoff's factor					•		i
			Ele	ctricit	y.		
Quantity of electrici	tv						Q
especially electros	tatic o	harge		•			e
Potential (difference Volta potential electrokinetic poten)						177
Volta potential	'.						j ^v
electrokinetic pote	ential						ζ
especially electron	notive	force	of vo	ltaic o	cells		Ĕ
Potential gradient, i	n elec	tric fi	eld				
Electronic exit work	funct	tion					φ
Current				•	•	•	\widetilde{I}
Resistance	•	•	•	•	•	•	\overline{R}
Resistance specific resistance	•	•	•	•	•	•	$\rho \dots \gamma$
specific conductan	•	•	•	•	•	•	κσ
			•	•	•	•	
Inductance, self mutual	•	•	•	•	•	•	L_{\perp}
mutual			•	•	•		M
Electrostatic capaci	ty	•		•	•		C
Dielectric constant		•				•	€
Dipole moment			•	•	•		μ
Electrochemistry.							
Degree of electrolyti	ic diss	ociati	on				α
Valency of an ion							z
Ionic strength .							I
							4
Equivalent conducts equivalent ionic c Transport number	ance	•		L:1:4	; ,	•	1 (with subscript)
equivalent ionic c	onauc	tance	, " mc	оппту		•	l (with subscript)
Transport number	•	•	•	•	•	•	T (with subscript)
							n (with subscript)
Single electrode pote	ential				•		e (with subscript),
							E (with subscript)
Electrolytic polarisa	tion,	overv	oltage				$\eta \dots \pi$
• •							•
			Ma	gnetis	m.		
Magnetic field stren	øth						H
			•				ϕ
flux . permeabil	itv	•		•		•	μ
susceptibi	itv—	· volum	ie.	•	•	•	K
Susceptible		mass		•	•	•	
moment			•	•	•	•	$\stackrel{\chi}{M}$
induction	•	•	•	•	•	•	B
maacton	•	•	•	•	•	•	_

Optics.							
Wave length .	•		•				λ
Wave number .					•		ν
Intensity of light	•				•		I
Refractive index	•	•	•	•	•	•	n (with subscript) μ (with subscript)
specific refraction	n.		•		•		r (with subscript)
molecular refract			•	•	•	•	[R] (with subscript)
Molar extinction co			•	•	•	•	ϵ
Angle of (optical) r			•	•	•	•	α
specific rotation			•	•	•	•	[α]
Specific magnetic r	otatio	n	•	•	•	•	ω
3 То	he E) Print	ad in	Bor	nan '	who	n not Greek.
	-	-	vi ainen	ratica	u Cons	ianis	s and Operators.
Base of natural log	arithn	ns			•	•	e
Ratio of circumfere	ence to	o dia	meter	•	•	•	π
Differential .			•				d
partial .		•	•				9
Increment .			•				Δ
very small increr	nent		•				δ
Sum			•		•		Σ
Product			•				Π
Function .		•	•	•			f, φ
((b) Ex	camp	les of s	single	-letter	abbr	eviations.
*Ampère (in sub-ur	nits)		•				a.
Volt	. ′						v.
Ohm							Ω .
Watt							w.
Farad	•	•	•	•	•	•	F.
Henry	•	•	•	•	•	•	н.
•	•	•	•	•	•	•	
Centigrade .	•	•	•	•	•	•	С.
Fahrenheit .	•	•	•	•	•	•	F.
Kelvin	•	•	•	•	•	•	к.
Angstrom unit	•		•	•	•	•	Α.
micron	•	•	•	•	•		μ.
metre	•	•	•	•	•	•	m.
gram							g.
litre			•		•		Ĭ.
Röntgen unit .	•		•		•		r.
†Normal (concentra	ation)		•				N.
†Molar (concentrat	ion)	•	•	•		•	M.
* E.g. " ma." for	" milli	ampè	re "; b	ut" a	mp.'' is	prei	ferred for "ampère."

^{*} E.g. "ma." for "milliampère"; but "amp." is preferred for "ampère."
† Separated by a hyphen (and no full stop) from a chemical formula which follows it.

The following prefixes to abbreviations for the names of units should be used to indicate the specified multiples or sub-multiples of these units:

M	mega-	$10^{6} \times$
k	kilo-	$10^3 \times$
d	d e ci-	$10^{-1} \times$
С	centi-	$10^{-2} \times$
m	milli-	$10^{-3} \times$
u	micro-	$10^{-6} \times$

e.g., M Ω . denotes megohm; kw., kilowatt; and µg., microgram. The use of µµ. instead of mµ. to denote 10^{-7} cm., or of γ to denote microgram is deprecated.

4. Subscripts and other Modifying Signs.

(a) Subscripts to symbols for quantities.

	(a) Substripts to symbols for quantities.
I, II 1, 2 A B i	specially with symbols for thermodynamic functions, referring to different systems or different states of a system. referring to molecular species A, B, etc. referring to a typical ionic species i. referring to an undissociated molecule.
+, -	referring to a positive or negative ion, or to a positive or negative electrode.
p, v, T	indicating constant pressure, volume, and temperature respectively.
q	indicating adiabatic conditions.
ıc	indicating that no work is performed.
p, c, a	with symbol for an equilibrium constant, indicating that it is expressed in terms of pressure, concentration, or activity.
G, V, L, X	referring to gas, vapour, liquid, and crystalline states, respectively.
f, e, s, t, d	referring to fusion, evaporation (vaporisation of liquid), sublimation, transition, and dissolution or dilution respectively.
c	referring to the critical state or indicating a critical value.
0	referring to a standard state, or indicating limiting value at infinite dilution.
O, D, F	with symbols for optical properties, referring to a particular wavelength.

Where a subscript has to be added to a symbol which already carries a subscript, the two subscripts may be separated by a comma or the symbol with the first subscript may be enclosed in parentheses with the second subscript outside.

(b) Other modifying signs.

- o as right-hand superscript to symbol (particularly to a symbol for a general thermodynamic function—see p. 5), referring to a standard state.
- [] enclosing formula of chemical substance, indicating its molar concentration.
- { } enclosing formula of chemical substance, indicating its molar activity.

```
In crystallography it is recommended that:
```

```
Millerian indices be enclosed in parentheses, ();
```

Laue indices be unenclosed;

Indices of a plane family be enclosed in braces, { };

Indices of a zone axis or line be enclosed in brackets, [].

Numerals attached to a symbol for a chemical element in various positions have the following meanings:

```
upper left mass number of atom.
```

lower left nuclear charge of atom.

lower right number of atoms in molecule.

e.g., ${}_{3}^{7}\text{Li}$; ${}_{1}^{2}\text{H}_{2}$ (= D_{2}).

ALPHABETICAL INDEX OF RECOMMENDED SYMBOLS, and single-letter abbreviations.

including all those given in the above lists except prefixes, subscripts and other modifying signs.

The name of any quantity for which a given symbol is a second preference is printed in parentheses.

- A free energy—Helmholtz; atomic weight; surface area.
- A. Ångstrom unit.
- a activity; (acceleration).
- a. ampère, in sub-units—see footnote, p. 2093.
- B magnetic induction.
- C concentration; electrostatic capacity. with subscript: molecular heat capacity.
- c. Centigrade.
- c velocity of light in vacuo.
- c velocity; concentration.
 - with subscript: specific heat.
- D diffusion coefficient.
- d diameter; distance; (density).
- d differential.
- ∂ partial differential.
- E energy; (intrinsic energy); potential difference, especially electromotive force of voltaic cells.

with subscript: single electrode potential.

- e electronic charge—charge equal and opposite in sign to that of an electron.
- e quantity of electricity, especially electrostatic charge. with subscript: single electrode potential.
- e base of natural logarithms.
- **F** Faraday's constant.
- ${\it F}$ force; (free energy—Helmholtz).
- F. farad; Fahrenheit.
- f acceleration; activity coefficient, for molar concentration; partition function.

```
f
    function.
    thermodynamic potential, Gibbs function, free energy-G. N. Lewis.
G
    acceleration due to gravity, standard value.
g
    acceleration due to gravity, as a variable; osmotic coefficient.
g
    gram.
g.
    enthalpy, total heat, heat content; magnetic field strength.
H
H.
    henry.
    Planck's constant.
h
h
    height.
    moment of inertia; ionic strength; electric current; intensity of light.
Ι
    vapour pressure constant; van 't Hoff's factor.
J
     mechanical equivalent of heat.
J
     gram-equivalent weight.
    chemical equilibrium constant; (compressibility).
     K_s solubility product.
ĸ.
     Kelvin.
    Boltzmann's constant.
k
     thermal conductivity; velocity constant of chemical reaction.
k
     latent heat per mol; self inductance; (solubility product).
     latent heat per g.; length; mean free path of molecules.
     with subscript: equivalent ionic conductance, "mobility".
l.
     litre.
    molecular weight; mutual inductance; magnetic moment.
M
     molar concentration.
M.
    rest mass of an electron.
m
m mass.
m. metre.
    Avogadro's number.
N
N
    mol fraction.
N. normal concentration.
     number of mols.
     with subscript: (transport number).
     with subscript: refractive index.
     pressure.
[P] parachor.
     pressure.
Q
     quantity of electricity.
     heat entering a system.
\boldsymbol{R}
     gas constant per mol; Rydberg's constant.
R
     electrical resistance.
[R] with subscript: molecular refraction.
     radius; (specific resistance).
     with subscript: specific refraction.
     Röntgen unit.
r.
S
     entropy.
     solubility; (surface area).
T
     temperature, on absolute Kelvin scale.
     with subscript: transport number.
     time; (temperature—not on absolute scale).
```

- U intrinsic energy. velocity component. with subscript: velocity of ions. Vvolume; potential, potential difference, including Volta potential. v. volume; velocity; velocity component. W(work done by or on a system). w. watt. work done by or on a system; velocity component. Xforce component; potential gradient in electric field. mol fraction. Y force component. force component; g.-equivalent weight; number of molecular collisions per second; atomic number. valency of an ion. degree of electrolytic dissociation; angle of optical rotation. α $[\alpha]$ specific optical rotation. surface concentration excess. ratio of specific heats; surface tension. increment. very small increment. dielectric constant; molar extinction coefficient. electrokinetic potential. efficiency of any process; viscosity; electrolytic polarisation, overvoltage. angle of contact; temperature—not on absolute scale. compressibility; specific conductance; magnetic susceptibility—volume. κ Λ equivalent conductance. λ wave length. chemical potential; dipole moment; magnetic permeability. μ with subscript: (refractive index). micron. μ. frequency; wave number. ν pressure, especially osmotic pressure. Π Π product. (electrolytic polarisation, overvoltage). π ratio of circumference to diameter. π density; specific resistance. sum. diameter of molecules; (surface tension); (specific conductance). σ time interval, especially half or mean life.
 - function. Φ χ ψ magnetic susceptibility—mass.
 - wave function.
 - Ω.

φ

angular velocity; specific magnetic rotation.

fluidity; electronic exit work function; magnetic flux.